Publicidad

Conceptualizando VII: Papel de la glucosa y la 18F-FDG en tumores malignos, con enfoque en cáncer de tiroides (Parte II)

Referencias

  1. Colmenter, L.; Bastianello, M.; Estrada, E. (30 de julio de 2012). Conceptualizando VII: Papel de la glucosa y la 18F-FDG en tumores malignos, con enfoque en cáncer de tiroides (Parte I). Alasbimn Journal, ISSN: 0717 - 4055. URL: http://www.alasbimnjournal.net/a/85
  2. Cooper DS, Doherty GM, Haugen BR, et al. American Thyroid Association (ATA) guidelines taskforce on thyroid nodules and differentiated thyroid cancer. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009;19:1167–221.
  3. Silberstein EB, Alavi A, Balon HR, et al. The SNMMI practice guideline for therapy of thyroid disease with 131I 3.0. J Nucl Med 2012;53:1633-51.
  4. Kohlfuerst S, Igerc I, Lind P. Recombinant thyrotropin is helpful in the follow up and I-131 therapy of patient with thyroid cancer: a report of the results and benefits using recombinant human thyrotropin in clinical routine. Thyroid 2005;15:371-6.
  5. Kraenslin ME, Meier C. Use of recombinant human thyroid–stimulating hormone in the management of well-differentiated thyroid cancer. Expert Opin Biol Ther 2006;2:167-76.
  6. Tuttle RM, Brokhin M, Omry G, et al. Recombinant human TSH-assisted radioactive iodine remnant ablation achieves short-term clinical recurrence rates similar to those of traditional thyroid hormone withdrawal. J Nucl Med 2008;49:764–70.
  7. Pacini F, Lippi F. Clinical experience with recombinant human thyroid-stimulating hormone (rhTSH): serum thyroglobulin measurement. J Endocrinol Invest 1999;22(suppl):25-29.
  8. Doi SA, Woodhouse NJ, Talib L, Onitilo A. Ablation of the thyroid remnant and I-131 dose in differentiated thyroid cancer: A meta-analysis revisited. Clin Med Res 2007;5:87-90.
  9. Tumino S, Belfiore A. Appearance of antithyroglobulin antibodies as the sole sign of metastatic lymph nodes in a patient operated on for papillary thyroid cancer: A case report. Thyroid 2000; 10:431-3.
  10. Ronga G, Fiorentino A, Paserio E, et al. Can Iodine-131 whole-body scan be replaced by thyroglobulin measurement in the post-surgical follow-up of differentiated thyroid carcinoma? J Nucl Med 1990;31:1766-71.
  11. Roelants V, De Nayer P, Bouckaert A, Beckers C. The predictive value of serum thyroglobulin in the follow-up of differentiated thyroid cancer. Eur J Nucl Med 1997;24:722-7.
  12. Yen TC, Lin HD, Lee CH, et al. The role of technetium-99m sestamibi whole-body scans in diagnosing metastatic Hurthle cell carcinoma of the thyroid gland after total thyroidectomy: a comparison with iodine-131 and thallium-201 whole-body scans. Eur J Nucl Med 1994;21:980–3.
  13. Grunwald F, Menzel C, Bender H, et al. Redifferentiation therapy-induced radioiodine uptake in thyroid cancer. J Nucl Med 1998;39:1903-6.
  14. Short SC, Suovuori A, Cook G, et al. A phase II study using retinoids as redifferentiation agents to increase iodine uptake in metastatic thyroid cancer. Clin Oncol 2004;16:569-74.
  15. Mazzaferri EL. An overview of the management of papillary and follicular thyroid carcinoma. Thyroid 1999;9:421-7.
  16. Schlumberger M, Lacroix L, Russo D, et al. Defects in iodide metabolism in thyroid cancer and implications for the follow-up and treatment of patients. Nat Clin Pract Endocrinol Metab 2007; 3:260-9.
  17. Schönberger J, Rüschoff J, Grimm D, et al. Glucose transporter 1 gene expression is related to thyroid neoplasms with an unfavorable prognosis: an immunohistochemical study. Thyroid 2002;12:747-54.
  18. Matsuzu K, Segade F, Matsuzu U, et al. Differential expression of glucose transporters in normal and pathologic thyroid tissue. Thyroid 2004;14:806-12.
  19. Hooft L, van der Veldt AA, van Diest PJ, et al. [18F] fluorodeoxyglucose uptake in recurrent thyroid cancer is related to hexokinase expression in the primary tumor. J Clin Endocrinol Metab 2005;90:328-34.
  20. Van Herle AJ, Uller RP. Elevated thyroglobulin: a marker of metastases
in differentiated thyroid carcinoma. J Clin Invest 1975;56:272-6.
  21. Ozata M, Suzuki S, Miyamoto T, et al: Serumthyroglobulin in the follow-up of patients with treated differentiated thyroid cancer. J Clin Endocrinol Metab 1994;79:98-105.
  22. Luca G, Ceriani L, Ghelfo A, et al. Preoperative undetectable serum thyroglobulin in differentiated thyroid carcinoma: incidence, causes and management strategy. Clin Endocrinol 2007;67:547-51.
  23. Pacini F, Pinchera A, Giani C, et al. Serum thyroglobulin in thyroid carcinoma and other thyroid disorders. J Endocrinol Invest 1980;3:283-92.
  24. Harish K. Thyroglobulin: current status in differentiated thyroid carcinoma. Endocr Regul 2006;40:53-67.
  25. Gibelli B, Tredici P, De Cicco C, et al. Preoperative determination of serum thyroglobulin to identify patients with differentiated thyroid cancer who may present recurrence without increased thyroglobulin. Act Otorhinolaryngol Ital 2005;25:94-9.
  26. Pacini F, Schlumberger M, Dralle H, et al. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol 2006;154:787-803.
  27. van Herle AJ, van Herle KA. Thyroglobulin in benign and malignant thyroid disease. In: Falk SA (ed): Thyroid Disease: Endocrinology, Surgery, Nuclear Medicine, and Radiotherapy. Philadelphia, Pa: Lippincott-Raven, 1997, pp 601-18. 

  28. Ruiz-Garcia J, Ruiz de Almodóvar JM, Olea N, et al. Thyroglobulin level as a predictive factor of tumoral recurrence in differentiated thyroid cancer. J Nucl Med 1991;32:395-8. 

  29. Duren M, Siperstein AE, Shen W, et al. Value of stimulated serum thyroglobulin levels for detecting persistent or recurrent differentiated thyroid cancer in high- and low-risk patients. Surgery 1999;126:13-9.
  30. Mazzaferri EL. An overview of the management of papillary and follicular thyroid carcinoma. Thyroid 1999;9:421-7.
  31. Spencer CA, Takeuchi M, Kazarosyan M, et al. Serum thyroglobulin autoantibodies: prevalence, influence on serum thyroglobulin measurement, and prognostic significance in patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab 1998;83:1121-7.
  32. Black EG, Sheppard MC, Hoffenberg R. Serial serum thyroglobulin measurement in the management of differentiated thyroid carcinoma. Clin Endocrinol 1987;13:107-10.
  33. Grant S, Luttrell B, Reeve T, et al. Thyroglobulin may be undetectable in the serum of patients with metastatic disease secondary to differentiated thyroid carcinoma. Follow-up of differentiated thyroid carcinoma. Cancer 1984;54:1625-8.
  34. Cailaux AF, Baudin E, Travagli JP, et al. Is diagnostic iodine-131 scanning useful after total thyroid ablation for differentiated thyroid cancer? J Clin Endocrinol Metab 2000;85:175-8.

  35. Pacini F, Cappezone M, Elisei R, et al. Diagnostic 131-iodine whole body scan may be avoided in thyroid cancer patients who have undetectable stimulated thyroglobulin levels after initial treatment. J Clin Endocrinol Metab 2002;87:1492-5.
  36. Smallridge RC, Meek SE, Morgan MA, et al. Monitoring thyroglobulin in a sensitive immunoassay has comparable sensitivity to recombinant human TSH-stimulated thyroglobulin in follow-up of thyroid cancer patients. J Clin Endocrinol Metab 2007;92:82-7.
  37. Pacini F. Follow up of differentiated thyroid cancer. Eur J Nucl Med 2002;S492-S496 (suppl 2).
  38. Schluter B, Bohuslavizki KH, Beyer W, et al. Impact of FDG PET on patients with differentiated thyroid cancer who present with elevated thyroglobulin and negative I131 scan. J Nucl Med 2001;42:71-6.
  39. Medwave. Año III, No.8, Septiembre 2003. Open Access, Creative Commons.
  40. Westbury C, Vini L, Fisher C, et al: Recurrent differentiated thyroid cancer without elevation of thyroglobulin. Thyroid 2000;10:171-6.
  41. Harder W, Lind P, Molnar M, et al: Thallium-201 uptake with negative I-131 scintigraphy and serum thyroglobulin in metastatic oxyphilic papillary thyroid carcinoma. J NuclMed 1997;39:236-8.
  42. Warburg O. The metabolism of tumors, New York, RS Smith Editors, 1931.
  43. Joensuu H, Ahonen A. Imaging of metastases of thyroid carcinoma with fluorine-18 fluorodeoxyglucose. J Nucl Med 1987;28:910-4.
  44. Parysow O. PET. Diagnóstico por imágenes en el seguimiento del cáncer de tiroides: Novelli JC y Sánchez A (eds), Universidad Nacional de Rosario Editora, pág 173, 2005.
  45. Schlumberger M, Lacroix L, Russo D, et al. Defects in iodide metabolism in thyroid cancer and implications for the follow-up and treatment of patients. Nat Clin Pract Endocrinol Metab 2007;3:260-9.
  46. Lazar V, Bidart JM, Caillou B, et al. Expression of the Na+/I- symporter gene in human thyroid tumors: a comparison study with other thyroid-specific genes. J Clin Endocrinol Metab 1999;84:3228-34.
  47. Schönberger J, Rüschoff J, Grimm D, et al. Glucose transporter 1 gene expression is related to thyroid neoplasms with an unfavorable prognosis: an immunohistochemical study. Thyroid 2002;12:747-54.
  48. Matsuzu K, Segade F, Matsuzu U, et al. Differential expression of glucose transporters in normal and pathologic thyroid tissue. Thyroid 2004;14:806-12.
  49. Hooft L, van der Veldt AA, van Diest PJ, et al. Thyroid cancer is related to hexokinase expression in the primary tumor. J Clin Endocrinol Metab 2005;90:328-34.
  50. Matsuzu K, Segade F, Wong M, et al. Glucose transporters in the thyroid. Thyroid 2005;15:545-50.
  51. AL-Nahhas A. Dedifferentiated thyroid carcinoma: the imaging role of 18F- FDG PET and non-iodine radiopharmaceuticals. Nucl Med Commun 2004;25:891-5.
  52. Andersen PE, Kinsella J, Loree TR, et al. Differentiated carcinoma of the thyroid with extra-thyroidal extension. Am J Surg 1995;170:467-70.
  53. Rivera M, Ghossein RA, Schoder H, et al. Histopathologic characterization of radioactive iodine-refractory fluorodeoxyglucose-positron emission tomography-positive thyroid carcinoma. Cancer 2008;113:48-56.
  54. Wreesmann VB, Ghossein R, Patel KN, et al. Genome-wide appraisal of thyroid cancer progression. Am J Pathol 2002;161:1549-56.
  55. Tickoo S, Pittas AG, Adler M, et al. Bone metastases from thyroid carcinoma. Arch Pathol Lab Med 2000;124:1440-7.
  56. Nitti M, Furfaro AL, Cevasco C, et al. PKC delta and NADPH oxidase in retinoic acid-induced neuroblastoma cell differentiation. Cell Signal 2010;22:828-35.
  57. Pierce BA. Genética. Un enfoque conceptual. 3ª edición. (2010) Editorial Médica Panamericana. Ji J, Strable J, Shimizu R, Koenig D, et al. WOX4 promotes procambial development. http://healthlibrary.epnet.com/GetContent.aspx?token=0b21bdaa-d1b7-47ef-8d3c-c6c194a26fe8&chunkiid=126535.
  58. Hosaka Y, Tawata M, Kurihara A, et al. The regulation of two distinct glucose transporter (GLUT1 and GLUT4) gene expressions in cultured rat thyroid cells by thyrotropin. Endocrinology 1992;131:159-65.
  59. vanTol KM, Jager PL, Piers DA, et al. Better yield of (18)fluorodeoxyglucose-positron emission tomography in patients with metastatic differentiated thyroid carcinoma during thyrotropin stimulation. Thyroid 2002;12:381-7.
  60. Petrich T, Börner AR, Otto D, et al. Influence of rhTSH on (18)F fluorodeoxyglucose uptake by differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging 2002;29:641-7.
  61. Chin BB, Patel P, Cohade C, et al. Recombinant human thyrotropin stimulation of fluoro-D-glucose positron emission tomography uptake in well-differentiated thyroid carcinoma. J Clin Endocrinol Metab 2004;89:91-5.
  62. Moog F, Linke R, Manthey N, et al. Influence of thyroid stimulating hormone levels on uptake of FDG in recurrent and metastatic differentiated thyroid carcinoma. J Nucl Med 2000;41:1989-95.
  63. Leboulleux S, Schroeder PR, Busaidy NL, et al. Assessment of the incremental value of recombinant thyrotropin stimulation before 2-[18F]-Fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography imaging to localize residual differentiated thyroid cancer. J Clin Endocrinol Metab 2009;94:1310-6.
  64. Heng HHQ. Cancer genome sequencing: the challenges ahead. Bioessays 2007;29:783–4.
  65. Wang W, Larson SM, Tuttle MR, et al. Resistance of [18F]- fluorodeoxyglucose-avid metastatic thyroid cancer lesions to treatment with high-dose radioactive iodine. Thyroid 2001;11:1169-75.
  66. Hooft L, van der Veldt AA, van Diest PJ, et al. [18F]fluorodeoxyglucose uptake in recurrent thyroid cancer is related to hexokinase i expression in the primary tumor. J Clin Endocrinol Metab 2005;90:328-34.
  67. Lennard CM, Patel A, Wilson J, et al. Intensity of vascular endothelial growth factor expression is associated with increased risk of recurrence and decreased disease-free survival in papillary thyroid cancer. Surgery 2001;129:552-8.
  68. Godballe C, Asschenfeldt P, Jørgensen KE, et al. Prognostic factors in papillary and follicular thyroid carcinomas: p53 expression is a significant indicator of prognosis. Laryngoscope 1998;108:243-9.
  69. Papotti M, Torchio B, Grassi L, et al. Poorly differentiated oxyphilic (Hürthle cell) carcinomas of the thyroid. Am J Surg Pathol 1996;20:686-94.
  70. Hundahl SA, Cady B, Cunningham MP, et al. Initial results from a prospective cohort study of 5583 cases of thyroid carcinoma treated in the United States during 1996: US and German Thyroid Cancer Study Group—an American College of Surgeons Commission on Cancer Patient Care Evaluation study. Cancer 2000;89:202-17.
  71. Shaha AR, Shah JP, Loree TR. Patterns of nodal and distant metastasis based on histologic varieties in differentiated carcinoma of the thyroid. Am J Surg 1996;172:692- 4.
  72. Yen TC, Lin HD, Lee CH, et al. The role of technetium-99m sestamibi whole-body scans in diagnosing metastatic Hürthle cell carcinoma of the thyroid gland after total thyroidectomy: a comparison with iodine-131 and thallium-201 whole-body scans. Eur J Nucl Med 1994;21:980-3.
  73. Lowe VJ, Mullan BP, Hay ID, et al. 18F-FDG PET of patients with Hürthle cell carcinoma. J Nucl Med 2003;44:1402-6.